附件 2

推荐层次	□重点资助 □第一层次 ✓■第二层次
组别	□理学 ✓■工学 □医药 □农林 □社科 □宣传文化 □企业
申报类型	✓■学术型 □学术应用并重型 □应用型
专业类别	材料类(按填报说明填写)

浙江省 151 人才工程培养人员 推荐人选申报表

姓	名:	蒋仲庆
单	位:	宁波工程学院
部门(圳	1 <u> X</u>):	宁波市人力资源和社会保障局

浙江省 151 人才工程联席会议办公室 制 二〇一六年四月

填 表 说 明

1. 封面填写方法:

- "推荐层次"栏,根据情况在"重点资助"、"第一层次"、 "第二层次"前打"√"。
- "组别"栏,所在单位为企业的申报人员填写"企业",其他人员根据自身所从事专业领域情况,在"理学"、"工学"、"医药"、"农林"、"社科"或"宣传文化"前打"√"。
- "申报类型"栏:根据自身所从事专业工作情况,在"学术型"、"学术应用并重型"、"应用型"前打"√"。
- "专业类别"栏按照 GB/T16835—1997 分为以下几类,申报人选根据自身所从事专业情况选择合适类别填写:

理学:数学类、物理学类、化学类、生物科学类、天文学类、 地质学类、地理科学类、地球物理学类、大气科学类、海洋科学 类、力学类、信息与电子科学类、材料科学类、环境科学类、心 理学类、科技信息与管理类; 工学: 地质类、材料类、机械类、 仪器仪表类、热能核能类、电工类、电子与信息类、土建类、水 利类、测绘类、环境类、化工与制药类、轻工粮食食品类、农业 工程类、林业工程类、纺织类、交通运输类、航空航天类、兵器 类、公安技术类、工程力学类、管理工程类;农学:植物生产类、 森林资源类、环境保护类、动物生产与兽医类、水产类、管理类、农业推广类;医学:基础医学类、预防医学类、临床医学与医学技术类、口腔医学类、中医学类、法医学类、护理学类、药学类、管理类;哲学:哲学类、马克思主义理论类;经济学:经济学类、管理类;法学:法学类、社会学类、政治学类、公安学类;教育学:教育学类、思想政治教育类、体育学类、职业技术教育类;文学:中国语言文学类、外国语言文学类、新闻学类、艺术类;历史学:历史学类、图书信息档案学类。

- 2.第二至第九项栏目起讫时间均为 2011 年 1 月至 2016 年 1 月。申报人员根据自身业绩情况填写,没有相关栏目业绩的,无需填写。
- 3.此表报 送到省联席会议办公室的截止日期为 2016 年 6 月 10 日,逾期不再受理。申报表一式 1 份,一律用 A4 纸打印,务 必提供 2 寸照片粘贴于照片处。表内第二至第七项栏目内容均须 附复印件 1 份作为附件(注:著作类只需复印封面、目录、前三页及封底,附件要求不超过 40 页),并单独装订成册。所有材料评审结束后,不再退还。

一、基本情况

姓	名	蒋伯	仲庆	性	别	男	出生年月	1982. 06		
出生	三地	浙江	奉化	政治	面貌	中共党员	党政职务	无		
文化	程度		:研究 生	学	位	博士	专技职务	副教授		
毕业团	时间	201	0. 06	所学·	专业	材料物理 与化学	从事专业	能源化工 材料及电 化学分析		
毕业:	学校	院等 体物	科学 离子 理研 近所	工作	· 单位					
通讯	地址		宁波市	海曙区	翠柏路	各 89 号	邮编	315016		
联系	士士	办公	电话				传真			
以	刀式	手	机		15888	15888199849 E-mail			nongqing@163.com	
何年	年入选省	省 151 /	人才工和	呈	□第一层次 2013 入选第几层次 □第二层次 ✓■第三层次					
					1.	2015 年入选	产波市领军协	泛人才培养	阜工程第二层次 ;	
单 λ -	选其他	トナエデ	程项目標	丰冲	2.	2014 年入选与	产波市重点高	5层次人才;		
		(/)/		900	3.	3. 2013 年入选浙江省高校中青年学科带头人培养对象;				
					4.	2011 年入选与	产波市领军协	注 人才培养	阜工程第三层次。	
	起始纪		终止			单 位		从事何工	<u></u> 作 备 注	
	2010	. 06	至	今		宁波工程等	学院	教师		
	2011	. 10	2013	. 02	美国	[德克萨斯大学 校	学奥斯汀分	博士后研究	究员	
主要简历	2006	. 09	2010	. 06	中国	科学院等离子 究所	产体物理研	博士研究 习	生学	
	2005	. 09	2006	. 07	中	中国科技大学近代物理系			生课 	
	2001	. 09	2005	. 07	ì	浙江师范大学	化学系	本科学	য	

	创新平台载体、学术技术组织名称	所任职务	备 注
创 新 平 台 载体、	英国皇家化学会	会员	
*** 大学技组任情况,	Journal of Membrane Science 、ACS Applied Materi & Interfaces、Industrial & Engineering Chemistry Research 、Electrochimica Acta 、Journal of Pow Sources 、Journal of Alloys and Compounds、Carbo Ionics	中恒八 /er	
	等国际著名期刊		

二、获奖情况

获奖名称	获奖项目名称	奖励级别	等级	排名	获奖时间
宁波 市科 技进步奖	等离子体聚合法制备新型锂离子电 池隔膜及其隔膜的性能研究	市厅级	三等奖	1/4	2015. 12
宁波市自 然科学优 秀论文	直接甲醇燃料电池用等离子体聚合 质子交换膜的合成与优化	市厅级	二等奖	1/3	2013. 12
宁波市青年科技奖	第十三届宁波市青年科技奖	市厅级		1/1	2015. 09

注:奖励级别分"国家级"、"省部级"、"市厅级";等级指"一等奖"、"二等奖"和"三等奖"。 申报"重点资助"的,只填写省部级以上重要奖项。

三、获项目(基金)资助情况

(一)纵向项目情况

项目(基金)名称	项目(基金)来源	项目(基金) 级别	金额(万元)	起止年度	参与人数、排名 和主要任务	是否 结题
等离子体放电反应 机理及等离子体聚 合膜成膜机理的同 步辐射研究	自然科学基金	国家级	57. 6	2016–201	1/7, 主持	否
等离子体技术在锂 离子电池正极复合 材料制备中的应用 及相关基础研究	自然科学基金	国家级	28	2012–201	1/8,主持	是
环糊精修饰碳纳米 管对多氯联苯的富 集研究	自然科学基金	国家级	20	2011–201	3/8,参与	是
新型等离子体聚合 阴离子交换膜的分 子设计及电化学特 性研究	自然科学基金	省部级	8	2014–201 6	1/5,主持	否
胍碱功能化带孔氧 化石墨烯纸复合等 离子体聚合离子交 换膜生产工艺的开 发和工业应用	科技	省部级	8	2015–201 8	1/4, 主持	否
磺化带孔氧化石墨 烯/磺化聚醚醚酮复 合膜的制备及其在 燃料电池中的应用 研究	科技	省部级	3	2014-201	1/1,主持	是
离子交换膜的等离 子体法可控制备及 其在能源器件中的 应用研究	科技	市厅级	5	2013–201 5	1/5, 主持	是
等离子体法改性氮 掺杂多孔石墨烯负 载的金属纳米粒子	自然科学基金	市厅级	3	2013–201 6	1/3,主持	否

电催化性能研究						
等离子体聚合法制 备新型锂离子电池 隔膜及其隔膜的性 能研究	自然科学基金	市厅级	4	2011–201	1/4,主持	是
氮掺杂中空石墨烯 球负载铂钌复合纳 米粒子催化剂的制 备及其电催化性能 研究	科技	国家级	2	2015–201 6	指导老师	否
蜂窝状多孔石墨烯 负载金属纳米粒子 催化剂的制备及其 电化学性能研究	科技	省部级	0.5	2014–201 5	指导老师	是
等离子体法制备新型电极及其电化学 特性研究	科技	省部级	0.5	2011–201	指导老师	是
由D-A体系所构筑的 分子催化剂的设计 合成及其光催化产 氢功能研究(浙江省 自然科学基金面上 基金)	自然科学基金	省部级	8	2015–201 7	2/3, 参与	否
等离子体功能化氧 化物/石墨烯纳米复 合结构的构建及其 电化学性能 研究	自然科学基金	省部级	5	2013–201	2/3,参与	否
金属氧化物/石墨烯 复合结构的构建及 其电化学性能研究	科技	市厅级	0	2012–201	3/4,参与	是
等离子体功能化金 属氧化物/石墨烯纳 米复合结构的构建 及其电化学性能研 究	自然科学基金	市厅级	4	2012-201	2/3,参与	是

注:项目来源指"发改"、"科技"、"自然科学基金"等;项目级别分"国家级"、"省部级"、"市厅级";项目排名前三的,不限项目数;项目排名第4及以后的,限4项。申报"重点资助"的,只填写省部级以上重点项目(基金)。

(二)横向项目情况

项	目	名	称	委托单位	金额 (万元)	起止年度	参与人数、排名 和主要任务	是否 结题

注:项目限 15 项;项目排名第 4 及以后的,限 4 项。

四、代表论文

						1		
论文题目	刊物 名称	期刊号	发表 时间	排名	论文 类别	索引 情况	影响 因子	被引 用次 数
Amine-Functionalized	Journal of	2050-7488	2013. 10	1/4	国外	SCI	7. 443	34
Holey Graphene as a	Materials				期刊	1区		(ESI
Highly Active	Chemistry A					Top 期		高被
Metal-Free Catalyst for						刊		引论
Oxygen Reduction								文)
Reaction								
The role of holes in	Journal of	0378-7753	2013. 12	2/2(通	国外	SCI	6. 217	31
improving the	Power Sources			讯作	期刊	1区		(ESI
performance of				者)		Top 期		高被
nitrogen-doped holey						刊		引论
graphene as an active								文)
electrode material for								
supercapacitor and								
oxygen reduction								
reaction								
High performance of a	Journal of	2050-7488	2014. 03	1/6	国外	SCI	7. 443	14
free-standing sulfonic	Materials				期刊	1区		
acid functionalized holey	Chemistry A					Top 期		
graphene oxide paper as						刊		
a proton conducting								
polymer electrolyte for								
airbreathing direct								
methanol fuel cells								
Randomly Stacked	Journal of	2050-7488	2013. 03	1/3	国外	SCI	7. 443	35
Holey Graphene Anodes	Materials				期刊	1区		
for Lithium Ion Batteries	Chemistry A					Top 期		
with Enhanced						刊		
Electrochemical								
Performance								
Hydrothermal Synthesis	ACS Applied	1944-8244	2015. 08	1/7	国外	SCI	6. 723	7
of Boron and Nitrogen	Materials &				期刊	1区		
Codoped Hollow	Interfaces					Top 期		
Graphene Microspheres						刊		
with Enhanced								
Electrocatalytic Activity								
for Oxygen Reduction								
Reaction								
Composite membranes	Journal of	0959-9428	2012.09	1/4	国外	SCI	6.626	59
based on sulfonated	Materials				期刊	1区		
poly(ether ether ketone)	Chemistry					Top 期		

and SDBS-adsorbed						刊		
graphene oxide for direct						ניו		
methanol fuel cells								
	T1 - £	0959-9428	0011 00	9 / 4 () 甬	国別	CCT	6. 626	8
Improvement of the	Journal of	0939-9420	2011.02	. –	国外	SCI	0.020	8
catalytic activity of PtRu	Materials			讯作	期刊	1区		
bimetallic nanoparticles	Chemistry			者)		Top 期		
by a plasma treatment in						刊		
their application of the								
ethanol electrooxidation					<u> </u>			
Plasma techniques for	Journal of	0376-7388	2014. 04	1/2	国外	SCI	5. 056	19
the fabrication of	Membrane				期刊	1区		
polymer electrolyte	Science					Top 期		
membranes for fuel cells						刊		
Optimization and	Journal of	0376-7388	2011. 02	1/3	国外	SCI	5. 056	16
synthesis of plasma	Membrane				期刊	1区		
polymerized proton	Science					Top 期		
exchange membranes for						刊		
direct methanol fuel cells								
Nitrogen-doped	Electrochimica	0013-4686	2014.09	1/4	国外	SCI	4. 504	11
Graphene Hollow	Acta				期刊	1区		
Microspheres as an						Top 期		
Efficient Electrode						刊		
Material for Lithium Ion								
Batteries								
Improvements of	Electrochimica	0013-4686	2011.07	1/2	国外	SCI	4. 504	15
electrocatalytic activity	Acta				期刊	1区		
of PtRu nanoparticles on						Top 期		
multi-walled carbon						刊		
nanotubes by a H ₂								
plasma treatment in								
methanol and formic								
acid oxidation								
Sulfonated poly(ether	International	0360-3199	2013. 04	1/3	国外	SCI	3. 313	44
ether ketone) membranes	Journal of				期刊	2区		
with sulfonated graphene	Hydrogen					Top 期		
oxide fillers for direct	Energy					刊		
methanol fuel cells								
Synthesis and	International	0360-3199	2012.06	1/2	国外	SCI	3. 313	7
optimization of proton	Journal of				期刊	2区		
exchange membranes by	Hydrogen					Top 期		
a pulsed plasma	Energy					刊		
enhanced chemical vapor								
deposition technique								
Effects of carbon content	Journal of	0925-8388	2012.05	1/2	国外	SCI	2. 999	30
		l.	i	ı	-	·		

on the electrochemical performance of LiFePO ₄ /C core/shell nanocomposites fabricated using FePO ₄ /polyaniline as an	Alloys and Compounds				期刊	1区 Top期 刊		
iron source								
Preparation of proton	RSC advances	2046-2069	2012. 01	1/3	国外	SCI	3.840	17
exchange membranes					期刊	3 🗵		
with high performance								
by a pulsed plasma								
enhanced chemical vapor								
deposition technique								
(PPECVD)								

注:类别指国内外期刊、国际会议等;索引指 SCI、EI、SSCI 等;限 15 篇。

五、代表著作

著作题目	出版社	出版时 间	书 号	类别	排名
Organic-inorganic	Nova Science	2011.07	ISBN:	专著	1/3
composite polymer	Publishers, Inc,		978-1-61324-264-3		
electrolyte membranes for	USA				
fuel cell					
Carbon nanotubes	InTech Open	2011.09	ISBN	专著	1/2
decorated metal	Access Publisher,		978-953-307-189-3		
nanoparticles for the	Croatia				
applications of proton					
exchange membrane fuel					
cells (PEMFCs)					
Polymer electrolyte	Nova Science	2011.07	ISBN:	专著	1/4
membranes and electrodes	Publishers, Inc,		978-1-61324-264-3		
fabricated using plasma	USA				
method and their					
applications in proton					
exchange membrane fuel					
cells (PEMFCs)					

注:类别指教材,专著,译著;著作限 15 部。

六、专利情况

专利名称	专利类别	批准时间	申请地区	是否授权	是否投产	排名
一种质子交换膜燃料电 池催化剂的制备方法	发明专利	2012. 07	中国	是	否	1/2
一种锂离子电池正极复 合材料的制备方法及其 专用装置	发明专利	2012. 07	中国	是	否	1/2
一种超薄质子交换膜燃 料电池膜电极的制备方 法	发明专利	2012. 11	中国	是	否	1/4
超薄等离子体聚合阴离 子交换膜的制备方法	发明专利	2013. 01	中国	是	否	1/3
超薄等离子体聚合磺酸 基质子交换膜的制备方 法及装置	发明专利	2012. 11	中国	是	否	1/3
核壳型碳包覆纳米级磷 酸铁锂复合正极材料及 其制备方法	发明专利	2011. 09	中国	否	否	1/2
一种自支撑磺酸功能化 表面带孔氧化石墨烯纸 的制备方法及其应用	发明专利	2015. 09	中国	否	否	1/5
一种用于直接甲醇燃料 电池的复合质子交换膜 及其制备方法	发明专利	2015. 10	中国	否	否	1/5
一种三明治结构复合质 子交换膜及其制备方法 和用途	发明专利	2015. 11	中国	否	否	1/5
一种三维多孔石墨烯掺 杂与包覆钛酸锂复合负 极材料的制备方法	发明专利	2012. 08	中国	否	否	2/5

注:专利类别指发明专利、实用新型专利、外观设计专利、软件著作权等。发明专利不限数量,实用新型、外观设计专利和软件著作权均限 10 项。

七、主持(参与)制定标准情况

标准名称	标准级别	标准编号	主持或参与	发布时间

注:标准级别指国际标准、国家标准、行业标准、省级地方标准,只填写已颁布(修订)标准。

八、主持产品技术研发情况

产品技术名称	立项时间	所在企业 名称/研发 投入 (万元)	已取得的经济效益(年销 售收入、占企业产值贡献 率、市场份额等)	技术创新水平(在 国内外同行业中的 地位)

注:本栏仅填写企业已投入并产业化的研发产品技术。"应用型"或"学术应用并重型"申报人员填写。